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Abstract
The rapid advancement of generative AI has accel-
erated the spread of Deepfake technologies, pos-
ing increasing threats to media authenticity, public
safety, and legal forensics. While detection algo-
rithms have made significant strides in accuracy,
many remain opaque black-box models, offering
little insight into their decision-making processes.
This lack of interpretability undermines trust and
hinders their use in high-stakes, real-world scenar-
ios. This survey offers a concise overview of cur-
rent and emerging approaches to explainable Deep-
fake detection, with a focus on enhancing trans-
parency, verifiability, and human alignment. We
categorize these methods into four main paradigms:
visual localization techniques, feature attribution
methods, natural language explanations, and agent-
based interactive reasoning. In addition, we high-
light key open challenges and propose future re-
search directions, including weakly supervised ex-
planation generation, unified multimodal reason-
ing, and real-world deployment. Our aim is to sup-
port the development of transparent, robust, and ac-
countable Deepfake detection systems suitable for
complex real-world environments.

1 Introduction
The rapid advancement of generative AI has led to an un-
precedented surge in Deepfake content—synthetic media that
convincingly mimics real humans and scenarios. Although
early Deepfakes focused on facial manipulations [Rossler et
al., 2019], recent developments extend to multimodal syn-
thetic content, including audio [Frank and Schönherr, 2021],
text [Zellers et al., 2019], and cross-modal generation [Chung
et al., 2017]. This evolution poses a significant threat to pub-
lic trust, legal evidence chains, and digital integrity in critical
scenarios.

Numerous detection models have been developed to ad-
dress the threat of deepfakes; however, many of these func-
tion as black-box classifiers, offering only binary or prob-
abilistic outputs without insight into their decision-making

∗Corresponding author

processes. Afchar et al. [2018] introduced MesoNet, a com-
pact convolutional neural network designed for Deepfake de-
tection. Although MesoNet achieves commendable perfor-
mance on benchmark datasets, it lacks mechanisms to provide
interpretable insights into its decision-making process. Li
and Lyu [2018] proposed DSP-FWA, which detects Deepfake
videos by identifying face warping artifacts using a dual spa-
tial pyramid strategy. While effective in detection, DSP-FWA
does not offer explanations for its classifications. Nguyen et
al. [2019] presented a multi-task learning approach that si-
multaneously performs detection and localization of manip-
ulated facial images. Despite its ability to highlight manipu-
lated regions, the model does not provide comprehensive ra-
tionales for its decisions. Such outputs, though effective in
benchmarking, often fall short in high-stakes real-world ap-
plications such as law enforcement, forensic auditing, and on-
line content moderation. These domains demand more than
a yes/no answer, they require interpretable, verifiable, and
traceable evidence that can support human decision-making.

In response, a growing body of research has focused on
enhancing the transparency of deepfake detection methods,
aiming to bridge the gap between high-performing classifiers
and systems that are interpretable and trustworthy to human
users. Existing techniques include visual localization meth-
ods such as Grad-CAM [Selvaraju et al., 2017] and saliency
heatmaps [Simonyan et al., 2013], which highlight discrim-
inative regions to aid in interpreting model predictions. Re-
cent works have also explored natural language explanations
using large language models, as demonstrated by Jia et al. [Jia
et al., 2024]. Furthermore, multimodal reasoning that com-
bine vision and language modalities, such as [Chakraborty
et al., 2025] and [Kundu et al., 2025], have been proposed
to generate coherent, interpretable evidence chains. Despite
these promising developments, the field remains fragmented,
with approaches emerging across diverse paradigms but lack-
ing a cohesive taxonomy or shared conceptual foundation. A
clearer organization of methods and deeper understanding of
evolving trends are needed to guide future research toward
interpretable and trustworthy Deepfake detection.

This paper presents a concise survey of recent advances in
explainable deepfake detection. We systematically categorize
both established and emerging approaches, and highlight key
research challenges and gaps. By offering a structured and
integrative perspective, this survey aims to support the de-



velopment of detection systems that are not only performant
but also transparent, interpretable, and accountable, meeting
the dual demands of algorithmic efficacy and human-centered
trust. The main contributions of this work are as follows:

• We offer a structured taxonomy of explainability meth-
ods for Deepfake detection, categorizing the field into
four functional paradigms, i.e., visual localization, fea-
ture attribution, natural language explanation, and agent-
based interactive reasoning.

• We highlight key research challenges and open ques-
tions, such as unified explainability frameworks, weakly
supervised explanation, agent-based interactive systems,
and real-world deployment, with the aim of guiding fu-
ture work in building transparent and accountable detec-
tion systems.

2 Explainability Techniques in Deepfake
Detection

Explainability in Deepfake detection refers to a model’s abil-
ity to provide human-understandable reasons for its predic-
tions, ideally in a form that not only indicates whether con-
tent is fake, but also how and where manipulations occur. Ex-
isting techniques can be broadly categorized into four major
paradigms: visual explanation methods, feature attribution
techniques, natural language explanations, and agent-based
reasoning frameworks.

2.1 Visual Explanation and Localization Maps
One of the most intuitive and widely used approaches to
explain Deepfake detection models is through spatial local-
ization, highlighting manipulated regions in the input image
or video that significantly influenced the model’s prediction.
These methods aim to provide visual justifications that are
particularly useful in high-stakes applications.

A common class of techniques involves heatmap genera-
tion, such as Grad-CAM [Selvaraju et al., 2017] and saliency
maps [Simonyan et al., 2013]. These methods compute class-
specific gradient activations or pixel-wise relevance scores
over convolutional layers, revealing spatial regions that con-
tribute most to the model’s final decision. In the context of
Deepfake detection, they have been used to expose pixel-level
artifacts introduced by face swapping, frame interpolation, or
expression warping. For example, Silva et al. [2022] pro-
posed a hierarchical ensemble network and used Grad-CAM
visualizations to interpret the spatial regions associated with
forged facial areas, enhancing model transparency for foren-
sic analysis. Similarly, Dong et al. [2022] analyzed matching-
based features extracted by a CNN-based Deepfake detec-
tor, and employed heatmap-based visualization to interpret
how the model focuses on manipulated regions. Naskar et
al. [2024] employed Grad-CAM to visualize the attention re-
gions of their base CNN models, offering insights into how
each model responds to manipulated facial areas. These vi-
sualizations support the interpretability of feature extraction
and stacking in their ensemble framework.

Another line of work leverages attention-based visualiza-
tion. Transformer-based models, such as Vision Transformers

(ViT) [Dosovitskiy et al., 2020], naturally encode spatial at-
tention across image patches. By extracting attention weights
or joint attention matrices, researchers can identify discrimi-
native regions that the model attends to when detecting ma-
nipulations. Building on this idea, Nguyen et al. [2024] inves-
tigate the use of self-supervised ViTs for deepfake detection.
They show that partial fine-tuning of the final transformer
blocks allows the model to adapt its attention specifically to
manipulation cues. Notably, their experiments demonstrate
that the fine-tuned DINOv2 models consistently attend to se-
mantically meaningful facial regions (e.g., eyes, nose, mouth)
where deepfake artifacts are likely to appear. This not only
improves detection accuracy but also enhances the explain-
ability of the model, making attention maps a valuable in-
terpretive tool in deepfake forensics. Extending this focus
on explainability to other modalities, similar efforts are being
made in audio deepfake detection. For instance, recent work
introduces novel explainability methods for state-of-the-art
transformer-based audio deepfake detectors [Channing et al.,
2024]. This research employs techniques such as attention
roll-out to visualize and highlight the regions of the audio in-
put that influence the model’s decisions, thereby narrowing
the explainability gap for human experts in the audio domain.
Complementing these efforts, a practical detector is available
as a GitHub repository [2022]. This detector, consist a Video
Deepfake detector based on hybrid EfficientNet CNN and Vi-
sion Transformer architecture. The model results can be an-
alyzed and explained by rendering a visualization based on
a Relevancy map calculated from the Attention layers of the
Transformer, overlayed on the input face image.

In addition, perturbation-based methods, such as occlusion
sensitivity analysis [Yosinski et al., 2015] or mask-based test-
ing [Fong and Vedaldi, 2017], systematically modify input
regions to observe changes in model outputs. These meth-
ods highlight causal image areas whose presence or absence
strongly affects the classification, thereby offering empirical
insight into the model’s decision behavior. This line of work
is also actively explored in the context of Deepfake detection.
For instance, some research [Tsigos et al., 2024] specifically
focuses on evaluating the effectiveness of various Explain-
able AI methods, including perturbation-based approaches,
for Deepfake detection models. Furthermore, similar tech-
niques are applied to other modalities. For audio deepfake
detection, explainability methods that employ occlusion have
been introduced to highlight the specific regions of the audio
input influencing the model’s decisions, thus aiming to close
the explainability gap for detectors [Channing et al., 2024].

Overall, these visual explanation methods are essential for
producing granular, region-level evidence that goes beyond a
mere binary classification of real or fake. By visually pin-
pointing the specific features or artifacts that a Deepfake de-
tection model identifies as indicative of manipulation, these
methods enable human auditors and legal experts to verify
or contest algorithmic decisions in a transparent and inter-
pretable manner. This transparency is crucial for building
trust in automated systems, especially in high-stakes appli-
cations like media authentication and forensic analysis. It al-
lows human oversight, facilitates accountability for the detec-
tion results, and provides actionable insights that can be vital



Table 1: Explainability Techniques for Deepfake Detection

Paradigm Key Techniques Descriptions Capabilities
Visual Explanation
and Localization
Maps

Grad-CAM, Saliency
Maps, Attention Maps,
Occlusion Sensitivity

Highlights spatial regions in images, videos,
or spectrograms that contribute to the model’s
decision, revealing where manipulations likely
occur.

Visualizes forged re-
gions; supports image
and audio spectrograms

Feature Attribution
and Token-Level
Insights

DeepLIFT, Integrated
Gradients, SHAP, LRP,
SOBOL

Quantifies the contribution of specific input
features (pixels, patches, or tokens) to pre-
dictions, enabling fine-grained, interpretable
analysis.

Provides pixel-, patch-,
and token-level attribu-
tion

Natural Language
Explanation with
LLMs

Prompt-based Fine-
tuning of LLMs, Vision-
language Co-training

Generates textual explanations that describe
why content is considered fake, which parts
are suspicious, and what cues the model used
to decide.

Produces contextual,
user-friendly explana-
tions

Agent-based Inter-
active Explanation

User-Agent Interaction,
Debate Agents (Agent-
Agent Interaction)

Uses agents capable of reasoning and engag-
ing in multi-turn dialogues with agents/users
to explain or justify detection outcomes.

Emulates human reason-
ing; supports dynamic
user queries

for understanding the nature of the deepfake and its potential
impact.

2.2 Feature Attribution and Token-Level Insights
Beyond visual localization, feature attribution represents a
complementary paradigm for explaining deepfake detection
models. These methods aim to quantify the individual contri-
butions of specific input features or tokens to a model’s pre-
diction confidence. By assigning importance scores to dis-
crete data fragments or their abstract representations, feature
attribution techniques offer a more fine-grained understand-
ing of model behavior.

One prominent method in this category is Integrated Gra-
dients (IG)[Sundararajan et al., 2017]. As a path-based attri-
bution technique, IG computes the integral of gradients along
a linear path from a baseline input to the actual input, thereby
quantifying each feature’s contribution to the model’s predic-
tion. In the context of deepfake detection, IG enables attri-
bution of decisions to specific input features, such as pix-
els in images or time-frequency patterns in audio, offering a
theoretically grounded interpretation of model behavior. For
example, IG has been employed in deepfake voice detec-
tion to analyze model predictions with respect to perceptually
meaningful features, such as formant structures in spectro-
grams [Lim et al., 2022]. Beyond unimodal settings, IG has
also been extended to multimodal detection scenarios. In the
Multimodaltrace framework [Raza and Malik, 2023], IG is
applied to jointly interpret audio and visual inputs, providing
insight into how the model differentially attends to modal-
ities when making predictions across multiple classification
heads. Such applications demonstrate IG’s versatility and its
potential for delivering human-understandable explanations
in complex, multimodal detection systems.

SHAP [Lundberg and Lee, 2017] is a model-agnostic attri-
bution method that offers a semantic interpretation of model
behavior by quantifying the contribution of each input feature
to the final prediction. Rooted in cooperative game theory,

SHAP conceptualizes input features, such as pixels, audio to-
kens, or facial landmarks, as players in a coalition game. The
model’s prediction serves as the ”payout,” which is fairly dis-
tributed among features using Shapley values. These values
are computed by systematically perturbing combinations of
inputs and observing changes in model output, thereby iso-
lating each feature’s marginal contribution. In deepfake de-
tection, SHAP has been used to interpret both traditional clas-
sifiers and deep neural networks, highlighting which input el-
ements (e.g., facial regions, texture inconsistencies, or spec-
tral artifacts) are most influential in classification decisions.
For instance, SHAP has been applied to spoofing and speech-
based deepfake detection [Ge et al., 2022], where it revealed
non-obvious model behaviors and localized critical artifacts.
Moreover, SHAP is often included in comparative evaluations
of explainable AI techniques for deepfake detection [Tsigos
et al., 2024], particularly those involving black-box models
trained on benchmarks like FaceForensics++. These studies
underscore SHAP’s utility in providing faithful and human-
interpretable explanations across diverse detection scenarios.

For models that process inputs as discrete units, such as
Vision Transformers (ViTs), which divide images into fixed-
size patches, patch-level attribution has emerged as a partic-
ularly relevant technique. In these architectures, the input
image is partitioned into a grid of patches, each treated as
a token within the attention mechanism. Attribution methods
such as DeepLIFT [Shrikumar et al., 2017] and LRP [Bach
et al., 2015] can be applied at the patch level, enabling
the assignment of importance scores to individual patches.
This fine-grained analysis facilitates the localization of sus-
picious regions likely to contain deepfake artifacts, for in-
stance, the mouth area in lip-sync manipulations or the eyes in
expression-forged videos. Nguyen et al. [2024] demonstrate
that fine-tuned Vision Transformers tend to focus their at-
tention on semantically meaningful facial regions where ma-
nipulations are most likely to occur. By examining attention
maps or applying attribution techniques at the patch level, it



becomes possible to precisely identify and visualize these re-
gions, offering interpretable insights into the model’s detec-
tion rationale.

Another notable attribution-based method is SOBOL [Fel
et al., 2021], which leverages Sobol’ indices from sensitivity
analysis to quantify the contribution of input variables to the
variance in model outputs. The technique operates by gen-
erating real-valued perturbation masks, sampled using Quasi-
Monte Carlo sequences, and applying them to the input image
through functions such as blurring. By measuring how these
perturbed inputs influence the model’s predictions, SOBOL
estimates total-order Sobol’ indices, producing visual expla-
nations that highlight the most influential input regions. In
a recent study, Tsigos et al. [2024] evaluated SOBOL along-
side other explanation methods within a quantitative evalu-
ation framework tailored to deepfake detection. Their find-
ings indicated that SOBOL consistently ranked among the
top-performing methods in localizing manipulated regions.
Expanding on this work, Tsigos et al. [2025] introduced
SOBOLadv, an enhanced variant that incorporates adversar-
ially generated samples to create more realistic and seman-
tically meaningful perturbation masks. This improved ver-
sion demonstrated increased explanation accuracy and suffi-
ciency, underscoring SOBOL’s robustness and adaptability in
the deepfake detection domain.

Beyond spatial features, deepfake detection, particularly in
multimodal and sequential domains, also benefits from token-
level attribution applied to abstract representations. In audio
deepfake detection, raw signals are commonly transformed
into sequences of mel-spectrograms or self-supervised em-
beddings. Attribution techniques assign importance scores
to specific time-frequency bins or embedding tokens, illumi-
nating which acoustic features, such as pitch variations, tim-
bre shifts, or atypical speech patterns, contribute most to the
detection of synthetic speech. Channing et al. [2024] tackle
this challenge by proposing novel explainability methods tai-
lored for transformer-based audio deepfake detectors. Their
approach leverages spectrogram inputs to pinpoint time- and
feature-specific regions critical for model decisions, facilitat-
ing a more interpretable and granular analysis of deepfake
artifacts in the audio domain.

Overall, feature attribution and token-level insight tech-
niques offer a granular and quantitative understanding of
model decisions in deepfake detection. These methods go
beyond merely highlighting where manipulations may occur,
to elucidating which features drive the detection and to what
extent they influence the outcome. Such detailed explana-
tions are essential for multiple reasons: they help reveal po-
tential model biases by identifying over-relied-upon regions
or features; they inform model refinement by pinpointing ar-
eas requiring more robust representation learning; and they
deepen human comprehension of the interplay between deep-
fake generation artifacts and detection mechanisms. This en-
hanced interpretability is critical for advancing more resilient,
transparent, and trustworthy deepfake detection systems.

2.3 Natural Language Explanation with LLMs
Inspired by recent advances in Natural Language Process-
ing (NLP) and Visual Question Answering (VQA), a growing

trend in deepfake detection is the generation of textual justifi-
cations to accompany model predictions. Rather than restrict-
ing outputs to binary labels, this approach utilizes large lan-
guage models (LLMs) and vision-language models (VLMs)
to generate human-readable explanations that answer ques-
tions such as, “Why is this video considered fake?” or “Which
parts appear unnatural, and why?”.

The core methodologies in this emerging area combine the
predictive capabilities of deepfake detectors with the genera-
tive strengths of LLMs. A common strategy is prompt-based
finetuning, wherein multimodal embeddings, such as visual
features from manipulated regions or audio cues from syn-
thetic speech, are extracted by a detector and provided to an
LLM alongside carefully crafted prompts. The LLM is then
finetuned to produce coherent, context-aware natural lan-
guage explanations that interpret the detector’s outputs. This
process effectively translates complex, high-dimensional fea-
ture representations into human-readable justifications that
highlight the presence of anomalies. Guo et al. [2025] in-
troduce a Multi-Modal Face Forgery Detector that performs
both binary classification and explanation generation. Their
approach integrates the multimodal representation learning of
a pre-trained CLIP model with the interpretability of LLMs
via customized prompt learning for face forgery. This en-
ables the LLM to generate detailed textual explanations that
align natural language descriptions with subtle indicators of
visual manipulation. Similarly, Yu et al. [2025] explore the
use of VLMs for generalizable and explainable deepfake de-
tection. Their method constructs forgery-specific prompt em-
beddings, which are passed into an LLM trained to generate
rich, context-sensitive explanations.

Another promising direction involves co-training vision-
language architectures, where the Deepfake detection task
is integrated directly into a vision-language model’s train-
ing process. The primary goal is to align visual or auditory
evidence of manipulation with corresponding textual expla-
nations. This approach allows for training the VLM to si-
multaneously identify deepfakes and generate captions or de-
scriptive text that precisely points out manipulated regions
or artifacts. An example is TruthLens [Kundu et al., 2025],
which provides explainable deepfake detection by simultane-
ously classifying images as real or fake and generating de-
tailed textual reasoning. This is achieved through a synergis-
tic training process that combines the global contextual un-
derstanding of multi-modal large language models (such as
PaliGemma2) with the localized feature extraction of vision-
only models (like DINOv2). This integrated training aligns
visual cues directly with textual explanations, enabling the
framework to effectively handle both face-manipulated deep-
fakes and fully AI-generated content, and to address fine-
grained queries (e.g., ”Does the eyes/nose/mouth look real or
fake?”). Another example is the work by Zhang et al. [2024],
which re-frames deepfake detection as a Deepfake Detection
Visual Question Answering (DD-VQA) task. The proposed
Vision and Language Transformer-based framework is co-
trained to provide both classification and textual explanations
grounded in common sense reasoning. This is achieved by
incorporating text- and image-aware feature alignment for-
mulation to enhance multi-modal representation learning, di-



rectly linking visual evidence of forgery with descriptive tex-
tual justifications.

While still in an exploratory phase, this research direc-
tion holds significant promise for bridging the gap between
complex deep learning models and human interpretability. In
contrast to conventional tools such as heatmaps or attribution
scores, natural language explanations provide a more intu-
itive and accessible way to convey model reasoning. They
are capable of articulating nuanced decision logic, offering
contextual insights, and even suggesting actionable interpre-
tations—features that are especially valuable in forensic set-
tings and public communication. Such interpretability is cru-
cial for building trust in automated systems, particularly in
the high-stakes domain of AI-generated content detection,
where transparency and accountability are paramount. Look-
ing forward, future research will likely focus on improving
the factual reliability, clarity, and robustness of generated ex-
planations, with an emphasis on minimizing hallucinations
and adapting outputs for practical, real-world deployment.

2.4 Agent-based Interactive Explanation
Agent-based interactive explanation offers a promising path-
way toward improving the explainability and transparency
of deepfake detection. By leveraging modular, role-specific
agents alongside dynamic agent–agent and user–agent inter-
actions, these systems can more closely emulate human-like
reasoning and forensic workflows, making them especially
valuable in high-stakes domains such as journalism, legal
analysis, and content moderation.

Modular Pipelines. A key advantage of agent-based sys-
tems lies in their ability to decompose the detection process
into specialized, manageable subtasks. Rather than relying
on a monolithic model, a multi-agent architecture delegates
distinct roles to dedicated agents. For instance, a detection
agent may first conduct authenticity classification to flag po-
tentially manipulated media. Once a sample is identified as
suspicious, a localization agent can analyze spatial or tem-
poral inconsistencies, such as unnatural facial expressions or
mismatched audio segments, thereby narrowing down the re-
gions of interest. Finally, an explanation agent aggregates
the findings and generates interpretable outputs in the form
of heatmaps, textual justifications, or interactive forensic re-
ports. This modular structure not only enhances analytical ro-
bustness and flexibility but also improves traceability and user
trust, as the decision-making processes of individual agents
can be independently examined and understood.

Debate Agents. Recent advances have shown that LLMs
can be effectively integrated into multi-agent systems for
deepfake detection. A notable example is the system pro-
posed by Jeptoo and Sun [2024], which adopts a struc-
tured debate format involving LLM agents assigned distinct
roles, such as fact-checkers, journalists, and data analysts.
Through deliberative dialogue, these agents collaboratively
assess content authenticity while simultaneously articulating
the rationale behind their judgments. In a similar vein, Liu
et al. [2025] introduced the TruEDebate (TED) framework,
which incorporates DebateFlow and InsightFlow agents to
present and challenge claims, uncover fabricated content, and
support transparent decision-making. These debate agents

provide an interpretable interface by exposing the reasoning
chains, diverse perspectives, and counterarguments that un-
derpin the final conclusions.

User–Agent Interaction. Although inter-agent interaction
enhances the transparency of internal reasoning processes,
user–agent/model interaction plays an equally critical role in
improving system usability and fostering user trust. Tradi-
tional deepfake detectors often yield static outputs, limiting
users’ ability to explore the system’s underlying rationale.
In contrast, interactive systems support multi-turn dialogues,
allowing users to ask follow-up questions, request clarifica-
tions, or investigate alternative explanations. Yu et al. [2025]
introduce a VLM-based deepfake detection framework that
integrates visual prompt embeddings, forgery-aware textual
features, and natural language querying. Their system en-
ables multi-turn interactions with users, facilitating interac-
tive reasoning and localized explanations, thereby signifi-
cantly improving transparency and user comprehension in
deepfake forensics.

Despite their promise, agent-based systems also pose sev-
eral challenges. Effective coordination among agents is cru-
cial to avoid inefficiencies and bottlenecks, particularly as
data flows through multiple analytical stages. Latency may
become an issue, especially in real-time or high-volume set-
tings. Furthermore, error propagation represents a significant
risk: a misclassification by an upstream agent, such as incor-
rectly flagging an authentic video as fake, can distort down-
stream analyses and ultimately reduce the interpretability and
reliability of the overall system.

In conclusion, agent-based interactive explanation repre-
sents a compelling paradigm for advancing explainable deep-
fake detection. By adopting a modular architecture that de-
composes the detection process into specialized, interacting
components, these frameworks enable more transparent, scal-
able, and accountable forensic workflows. Looking ahead,
future research should prioritize improving inter-agent coor-
dination, enhancing user interactivity, and strengthening the
robustness and fidelity of explanations to fully unlock the po-
tential of these architectures in real-world deployments.

3 Open Challenges and Future Directions
Despite encouraging progress in explainable deepfake detec-
tion, several critical research challenges remain. This section
outlines key obstacles and promising avenues for advancing
the field toward more reliable, scalable, and human-aligned
interpretability.

3.1 Unified Explainability Frameworks for
Multimodal Deepfakes

While most existing explainability methods have been devel-
oped for single-modal deepfakes, recent advances in gener-
ative models have enabled the creation of multimodal deep-
fakes that blend video, audio, text, and even behavioral cues.
This evolution introduces new challenges: current explain-
ability techniques often operate in isolation, failing to capture
the intricate interplay of manipulation signals across modali-
ties. As a result, their utility is limited in real-world scenarios,
where multimodal forgeries are increasingly prevalent.



To address this gap, future research must move toward
modality-agnostic explanation frameworks that deliver holis-
tic and interpretable assessments of deepfake content. A
unified approach should address three key components: i)
Modality-specific attribution: First, the system must detect
and attribute manipulation cues unique to each modality. For
example, unnatural prosody in audio, lip-sync inconsistencies
in video, or contradictions between visual and textual con-
tent. ii) Cross-modal reasoning: These diverse signals must
then be integrated through advanced reasoning mechanisms
capable of evaluating their interdependence and synthesizing
a coherent explanation of the content’s authenticity. iii) Mul-
tiform explanation output: To ensure accessibility and usabil-
ity, explanations should be presented in both visual and tex-
tual formats. For instance, combining attention heatmaps that
localize artifacts with narrative descriptions that contextual-
ize their significance.

Vision-language models (VLMs) and cross-modal atten-
tion mechanisms offer promising foundations for building
such systems. VLMs can align visual evidence with linguis-
tic reasoning, enabling rich, human-readable justifications.
Meanwhile, cross-modal attention techniques can help pri-
oritize and unify signals across modalities, producing more
focused and accurate interpretations of complex manipula-
tions. Together, these technologies may support the next gen-
eration of explainable systems that are robust, multimodal,
and aligned with human interpretive needs.

3.2 Weakly- and Unsupervised Explanation
Many real-world deepfake detection scenarios lack access to
dense supervision, such as pixel-level manipulation masks or
human-authored explanation annotations. Relying on fully
annotated datasets constrains the scalability and adaptability
of explainable detection systems, as manual labeling is labor-
intensive, time-consuming, and often error-prone. To address
these limitations, future research must explore weakly super-
vised and unsupervised approaches for explanation genera-
tion, enabling broader deployment of interpretable systems
in diverse, data-scarce environments.

Learning manipulation patterns via anomaly detection or
self-supervised objectives. Instead of depending on explicit
labels, models can learn to identify deepfake characteristics
by detecting deviations from the statistical patterns of au-
thentic content. Self-supervised learning can leverage in-
trinsic structures in the data, such as temporal coherence or
frequency regularity, to learn meaningful representations that
implicitly encode manipulation cues.

Aligning visual signals with textual outputs using minimal
human feedback. Techniques that can infer relationships be-
tween visual anomalies and their textual descriptions with
limited even no direct human input are crucial. This could
involve using contrastive learning or alignment methods to
bridge the gap between visual and linguistic representations.

Employing prompt engineering with LLMs for zero-shot
or few-shot explanation generation. The emergent reason-
ing capabilities of LLMs can be harnessed through carefully
crafted prompts to synthesize coherent textual explanations
from minimal visual cues. This approach avoids task-specific

finetuning, enabling flexible and low-cost generation of ex-
planatory outputs.

Adopting weakly- and unsupervised techniques would sig-
nificantly lower the dependency on labeled data, improve
generalization across modalities and manipulation types, and
facilitate scalable deployment of explainable deepfake detec-
tion systems in real-world applications where annotated re-
sources are limited.

3.3 Agent-based Interactive Explanation
A promising yet underexplored direction in deepfake detec-
tion is the development of modular, agent-based interactive
systems. In contrast to traditional monolithic models that of-
ten function as black boxes, modular architectures decom-
pose the detection pipeline into discrete, cooperative agents,
each assigned a specialized subtask such as detection, local-
ization, or explanation. This structural design introduces sev-
eral key advantages for interpretability and adaptability.

Inherent interpretability by design. Each agent is responsi-
ble for a clearly defined analytical function, such as detecting
facial inconsistencies, identifying audio-visual mismatches,
or aligning multimodal evidence. This division of labor facil-
itates fine-grained traceability, allowing system outputs to be
linked back to specific reasoning components.

Step-by-step, traceable rationales. Modular pipelines natu-
rally produce a sequence of intermediate outputs, from initial
feature extraction to final classification. These outputs can
be aggregated into layered, transparent (“white-box”) expla-
nations, supporting greater user understanding and diagnostic
insight into the decision process.

Scalability across manipulation types. As deepfake gener-
ation techniques continue to diversify, modular frameworks
offer greater flexibility. New agents can be introduced or ex-
isting ones fine-tuned to handle emerging modalities or ma-
nipulation strategies, without retraining the entire system, en-
abling continuous system evolution.

To further enhance reasoning capabilities and interactivity,
large foundation models such as LLMs and VLMs can serve
as high-level controller modules. These models can orches-
trate agent behavior, unify heterogeneous signals, and gener-
ate coherent natural language justifications. This hybrid ap-
proach, combining modular specialization with the general-
ization power of foundation models, presents a scalable, ex-
tensible, and human-aligned pathway for interactive and ex-
plainable deepfake detection.

3.4 Real-world Deployment and Societal
Alignment

Ultimately, explainable Deepfake detectors must function ef-
fectively in real-world settings, where inputs are noisy, users
are non-experts, and the implications of decisions can be far-
reaching. The transition from controlled experimental envi-
ronments to real-world deployment introduces a host of chal-
lenges that extend well beyond algorithmic accuracy, encom-
passing ethical, legal, and societal considerations. Several
pressing questions and emerging risks must be addressed:

How do the explanations influence human trust, decision-
making, and accountability? While explanations are intended
to build trust, poorly designed or misleading explanations



could have the opposite effect. It is crucial to understand
how different types of explanations influence user confidence,
whether they lead to more accurate human judgments, and
how accountability for decisions made with the aid of these
systems is distributed.

Can the explanations themselves be adversarially manip-
ulated? Recent studies in explainable AI have shown that
explanation outputs can be targeted and altered without af-
fecting model predictions, a phenomenon known as expla-
nation manipulation. In the Deepfake context, a malicious
actor might craft adversarial examples that not only bypass
detection but also generate plausible-looking heatmaps or ra-
tionales, deliberately misleading the user.

How do explanations propagate or mask algorithmic bias?
Explanations are not inherently neutral, they often reflect and
can reinforce biases present in a model’s training data or de-
sign. A deepfake detection system trained largely on Western
celebrity datasets may underperform, and produce mislead-
ing explanations, when analyzing individuals from underrep-
resented ethnic or cultural groups. This raises equity con-
cerns that biased explanations may wrongly flag content from
marginalized communities or fail to justify the authenticity of
real content, reinforcing mistrust and exclusion.

How to balance transparency with privacy and security
concerns? While interpretability often requires surfacing in-
ternal model processes, doing so may inadvertently reveal
proprietary methods or system vulnerabilities. Attackers
could exploit explanation outputs to reverse-engineer detec-
tion logic, thus crafting more evasive Deepfakes. Moreover,
certain explanations might expose sensitive metadata or in-
dividual biometric features, creating privacy risks. A care-
ful balance must be struck between offering sufficient trans-
parency and safeguarding privacy and security.

These concerns underscore the need for ethical, legal, and
policy frameworks developed in parallel with technological
solutions. Responsible deployment of explainable deepfake
detection demands interdisciplinary collaboration, engaging
computer scientists, sociologists, legal experts, ethicists, and
affected communities. Priorities include defining metrics for
explanation robustness and fairness, creating oversight mech-
anisms for disputed outcomes, and adopting user-centered de-
sign standards that tailor explanations to diverse audiences.
Without such safeguards, even technically sound systems risk
eroding public trust and amplifying harm.

4 Conclusion
As Deepfake technologies grow in realism, scale, and modal-
ity, the demand for explainable and trustworthy detection sys-
tems becomes increasingly urgent. This survey reviewed re-
cent advances across four key paradigms: visual localization,
feature attribution, natural language explanation, and agent-
based interactive reasoning. Each contributes a distinct lens
on interpretability, i.e., from spatial and pixel-level evidence
to human-readable justifications with multi-agent collabora-
tion.

Despite notable progress, major challenges persist, includ-
ing limited cross-modal integration, annotation scarcity, and
deployment in real-world settings. We outlined several future

directions to address these gaps, involoving unified multi-
modal frameworks, weakly supervised explanation methods,
modular agent-based architectures, and ethically grounded
deployment strategies.

Ultimately, explainability is not only a technical enhance-
ment but a foundation for accountability, transparency, and
public trust in high-stakes domains. Realizing this vision re-
quires the development of scalable, human-aligned models,
and sustained interdisciplinary collaboration among technol-
ogists, domain experts, and affected communities.
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